Orthogonality of complex continuous functions.

Author: Arkadi Kagan. arkadi_kagan@hotmail.com

Introduction.

In this document I will try to prove validity of orthogonality law for complex continious functions. This law is known centuries and most compact is referred like this:

Two functions φ and ψ are orthogonal iff $(\varphi, \psi) = 0$.

The prove I am starting from geometric definition of orthogonality and extand the definition step by step.

Orthogonality of vectors is known as geometric idea in two and three-dimensional <u>Euclidean Spaces</u>. In **two-dimensional space**, lets take two orthogonal vectors A and B.

Remind geometric law for <u>summation of two vectors</u>:

Vector C is defined to be a sum of vectors A and B.

From simple geometric calculations, Euclidean coordinates of vector C are:

 $x_c = x_a + x_b$, $y_c = y_a + y_b$ where

$$A = (x_a, y_a) , \quad B = (x_b, y_b) , \quad C = (x_c, y_c) .$$

Recall Pythagorean Theorem:

Two vectors a and b are orthogonal and c = a(+)b iff $|c|^2 = |a|^2 + |b|^2$. Where (+) is geometric summation of vectors and |a| is <u>Euclidean length</u> of vector, defined by $|a|^2 = x_a^2 + y_a^2$ for two-dimensional vector a or $|a|^2 = x_a^2 + y_a^2 + z_a^2$ in three-dimensional space.

Theorem 1: If A and B are orthogonal, then $x_a x_b + y_a y_b = 0$. Prove: Lets compute vector lengths of vectors A, B and C (squares of lengths).

 $|A|^{2} = x_{a}^{2} + y_{a}^{2}$, $|B|^{2} = x_{b}^{2} + y_{b}^{2}$, $|C|^{2} = x_{c}^{2} + y_{c}^{2}$ and by <u>Pythagorean Theorem</u> $|C|^{2} = |A|^{2} + |B|^{2}$.

Lets write full computation of $|C|^2$ in terms of A and B coordinates:

$$\begin{split} |C|^{2} &= (x_{a} + x_{b})^{2} + (y_{a} + y_{b})^{2} \text{ or } |C|^{2} = (x_{a}^{2} + y_{a}^{2}) + (x_{b}^{2} + y_{b}^{2}) \\ x_{a}^{2} + 2x_{a} x_{b} + x_{b}^{2} + y_{a}^{2} + 2y_{a} y_{b} + y_{b}^{2} = x_{a}^{2} + x_{b}^{2} + y_{a}^{2} + y_{b}^{2} ; \\ 2x_{a} x_{b} + 2y_{a} y_{b} = 0 ; \end{split}$$

 $x_a x_b + y_a y_b = 0$ that is what was required to be proven.

Theorem 2: If $x_a x_b + y_a y_b = 0$ then A and B are orthogonal vectors.

Prove: If $x_a x_b + y_a y_b = 0$, then $|C|^2 = |A|^2 + |B|^2$ - symmetric to prove of Theorem 1. By Pythagorean Theorem $|C|^2 = |A|^2 + |B|^2$, therefore vectors A and B are orthogonal.

In three-dimensional space the things are quit similar.

- As known from stereometric laws, two vectors A and B are orthogonal iff exist plane P:
- The plane P is defined by three points (A, B, O), where O is coordinates system centre.
- Vectors A and B are orthogonal on two-dimensional space in plane P.

Define vector C that is a geometric summation of vectors A and B in plane P. By definition of stereometric vector length and Pythagorean theorem, we can compute lengths of A, B and C like this:

 $|A|^{2} = x_{a}^{2} + y_{a}^{2} + z_{a}^{2}$, $|B|^{2} = x_{b}^{2} + y_{b}^{2} + z_{b}^{2}$, $|C|^{2} = x_{c}^{2} + y_{c}^{2} + z_{c}^{2}$ and else $|C|^{2} = |A|^{2} + |B|^{2}$.

Coordinates of vector C are computed like this:

 $x_c = x_a + x_b$, $y_c = y_a + y_b$, $z_c = z_a + z_b$. Where $A = (x_a, y_a, z_a)$, $B = (x_b, y_b, z_b)$, $C = (x_c, y_c, z_c)$. By simple substitution equation for $|C|^2$ can be rewrote like this: $|C|^2 = (x_1 + x_2)^2 + (y_1 + y_2)^2 + (z_1 + z_2)^2$ and else $|C|^2 = (x_1^2 + y_1^2 + z_2^2) + (x_1^2 + y_2^2 + z_2^2)$

$$x_{a}^{2} + 2x_{a} x_{b} + x_{b}^{2} + y_{a}^{2} + 2y_{a} y_{b} + y_{b}^{2} + z_{a}^{2} + 2z_{a} z_{b} + z_{b}^{2} = ;$$

$$x_{a}^{2} + y_{a}^{2} + z_{a}^{2} + x_{b}^{2} + y_{b}^{2} + z_{b}^{2} = ;$$

$$2x_{a} x_{b} + 2y_{a} y_{b} + 2z_{a} z_{b} = 0 ; \quad x_{a} x_{b} + y_{a} y_{b} + z_{a} z_{b} = 0 .$$

This result is equivalent for "Theorem 1" in three-dimensional space. The prove for "Theorem 2" in three-dimensional space is guit symmetric exactly like it was in case of two-dimensional vector space.

Lets generalize definition of orthogonality for vector space of any dimension.

N-1 $\sum_{i=0} a[i]b[i]=0$. For two and three-dimensional vector space, vectors a and b are orthogonal iff

This result we get from simple geometric laws and Pythagorean Theorem.

For other dimensions, where $N \neq 2$ and $N \neq 3$, the geometric laws are irrelevant. Therefore, we postulate this **definition**:

Two N-dimensional vectors a and b of real numbers are orthogonal iff $\sum_{i=0}^{N-1} a[i]b[i]=0$.

Where N is integer, N > 0. The last sum is so important, that deserved for own name: Dot Product of two vectors of real numbers a and b is $(a, b) = \sum_{i=0}^{N-1} a[i]b[i]$. Within Dot Product notation, two vectors of real numbers a and b are orthogonal iff (a, b) = 0.

Remind definition of <u>vector length</u> (norm). In N-dimensional space **length of vector** a is defined like $|a| = \sqrt{\sum_{n=0}^{N-1} a^2[n]}$ and corresponding square length is $|a|^2 = \sum_{n=0}^{N-1} a^2[n]$. Within Dot Product notation for N-dimensional vector of real numbers a, its square length is $|a|^2 = (a, a)$.

Complex Dot Product and Orthogonality.

Dot Product concept can be extended to cover the Space of Complex Vectors.

Lets start from square length of vector. By definition $|a|^2 = (a, a)$.

Any complex number I will write here in this form: $a = a_r + ja_i$. Where $j^2 = -1$, a_r is called real part and a_i imaginary part of complex number a. It is common to draw complex number as two-dimensional vector. Square length of this vector could be computed like this:

 $||a||^{2} = a_{r}^{2} + a_{i}^{2} .$

For vector of N complex numbers its square length could be computed as square length of 2N-dimensional vector, where listed both – real and imaginary parts of each vector coordinate. This square length is:

$$\|a\|^{2} = \sum_{n=0}^{N-1} (a_{r}^{2}[n] + a_{i}^{2}[n]) =$$

$$(aa^{*} = (a_{r} + ja_{i})(a_{r} - ja_{i}) = a_{r}^{2} + a_{i}^{2})$$

$$= \sum_{n=0}^{N-1} a[n]a^{*}[n] .$$

Where a^* is a <u>complex conjugate</u> of a. Conjugate of complex number a is signed a^* and defined like this: if $a = a_r + ja_i$ then $a^* = a_r - ja_i$.

Orthogonality of **complex** number vectors can be defined by geometry laws only for **one-dimensional** vectors. Given two one-dimensional vectors of complex numbers a and b, $a = a_r + ja_i$ and

 $b = b_r + jb_i$. Take two points A and B in complex plane, corresponding to the given vectors: $A = (a_r, a_i)$ and $B = (b_r, b_i)$.

If vectors A and B are orthogonal, then $a_r b_r + a_i b_i = 0$ according to the "Theorem 1".

With geometrical interpretation of orthogonality, there is very important, although trivial law of symmetry: If a is orthogonal to b, then b is orthogonal to a.

Suppose this **definition** of complex vectors orthogonality:

Given two N-dimensional vectors of complex numbers a and b,

N-1we say a is orthogonal to b iff $\sum_{n=0}^{n-1} a[n]b^{*}[n]=0$. Obviously, *b* is orthogonal to *a* iff $\sum_{n=0}^{N-1} b[n]a*[n]=0$.

For one-dimensional complex vectors a and b, where

 $a = \{(a_r + ja_i)\}$ and $b = \{(b_r + jb_i)\}$:

- Orthogonality of a to b mean $(a_r + ja_i)(b_r - jb_i) = 0$.

- Orthogonality of b to a mean $(a_r - ja_i)(b_r + jb_i) = 0$.

Because of symmetry law we get two equations that must be valid simultaneously:

$$\begin{cases} (a_r + ja_i)(b_r - jb_i) = 0\\ (a_r - ja_i)(b_r + jb_i) = 0 \end{cases} \text{ That can be rewrote: } \begin{cases} a_r b_r - ja_r b_i + ja_i b_r + a_i b_i = 0\\ a_r b_r + ja_r b_i - ja_i b_r + a_i b_i = 0 \end{cases}$$

Lets sum the first equation with the second by its left and right parts:

$$2a_rb_r + 2a_ib_i = 0$$
 or $a_rb_r + a_ib_i = 0$

If now we represent complex number as two-dimensional vector of real numbers, we get this immediate result: Orthogonality condition for one-dimensional vectors of complex numbers is equivalent to orthogonality of two-dimensional vectors of real numbers.

Summary of Complex Vector Orthogonality.

Natural expansion of orthogonality condition to vector space of Complex numbers is:

$$\sum_{n=0}^{N-1} a[n]b*[n]=0 .$$

From all the above calculation we get natural extent of **Dot Product** concept to the field

N-1of complex number vectors: $(a, b) = \sum_{n=0}^{\infty} a[n]b*[n] = 0$.

With complex Dot Product notation, we get this two final definitions:

- Two complex vectors a and b are orthogonal iff (a, b) = 0.
- The square length of complex vector a is $||a||^2 = (a, a)$.

Orthogonality of Continuous Complex Functions.

Lets take a pair of complex continuous functions φ and ψ . My goal is to define orthogonality of φ and ψ in range between real numbers a and b. For simplicity I will restrict a < b, although this restriction is artificial.

Split range [a, b] to N equal pieces. From this pieces of range [a, b] and continuous functions φ and ψ we can define two complex vectors φ and ψ , N elements each:

$$\underline{\varphi}[n] = \varphi\left(a + \frac{b-a}{N}n\right) \text{ for } 0 \le n < N$$
$$\underline{\psi}[n] = \psi\left(a + \frac{b-a}{N}n\right) \text{ for } 0 \le n < N$$

Vector $\underline{\varphi}$ is orthogonal to vector $\underline{\psi}$ iff $\sum_{n=0}^{N-1} \underline{\varphi}[n] \underline{\psi}^*[n] = 0$. The same condition can be

rewritten like this:
$$\sum_{n=0}^{N-1} \varphi \left(a + \frac{b-a}{N} n \right) \psi^* \left(a + \frac{b-a}{N} n \right) = 0$$
.

Multiply left and right parts of the equation by $\frac{b-a}{N}$:

$$\frac{b-a}{N} \sum_{n=0}^{N-1} \varphi \left(a + \frac{b-a}{N} n \right) \psi^* \left(a + \frac{b-a}{N} n \right) = 0$$

The left part of the last equation, by definition of Definite Integrals and Riemann Sum, if N is taken to

its positive infinite limit, it is Definite Integral: $\int_{a}^{b} \varphi(x)\psi^{*}(x)dx$.

From all the above calculations we get definition of **Orthogonality for Complex Continuous Functions**:

Two complex continuous functions
$$\varphi$$
 and ψ are **orthogonal**
in range $[a, b]$ iff $\int_{a}^{b} \varphi(x)\psi^{*}(x)dx = 0$.

Given this formula, we define an extension of concept **Dot Product** for continuous functions. In this case it is referred to as <u>Inner Product</u> and is defined for continuous complex functions φ and ψ :

$$(\boldsymbol{\varphi}, \boldsymbol{\psi}) = \int_{a}^{b} \boldsymbol{\varphi}(x) \boldsymbol{\psi}^{*}(x) dx$$
.

With Inner Product notation, similar to Dot Product notation, condition of orthogonality is written like $(\varphi, \psi) = 0$.

References:

"Base of Math Analysis" by G.M.Fihtengoltz (Russian edition)

"Base of Math Analysis" by V.A.Ilyin and E.G.Posnyak (Russian edition)

<u>* Mathematics of the Discrete Fourier Transform (DFT), with Music and Audio Applications</u>", by Julius O. Smith III, <u>W3K Publishing</u>, 2003, <u>ISBN</u> 0-9745607-0-7.

Discrete-Time Speech Signal Processing: Principles and Practice, 1/e Thomas F. Quatieri ISBN: 013242942X | Prentice Hall PTR

"The FFT Demystified." by Adrian Hey Engineering Productivity Tools Ltd. <u>http://www.eptools.com/tn/T0001/INDEX.HTM</u>

"Dot Product." Eric W. Weisstein. From <u>MathWorld</u>--A Wolfram Web Resource. <u>http://mathworld.wolfram.com/DotProduct.html</u>