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In this document I will try to prove validity of orthogonality law for complex continious functions. This
law is known centuries and most compact is referred like this:

Two functions B and C are orthogonal iff D , E F 0 .

The prove I am starting from geometric definition of orthogonality and extand the definition step by
step.



Orthogonality of vectors is known as geometric idea in two and three-dimensional Euclidean Spaces.
In two-dimensional space, lets take two orthogonal vectors A and B.
Remind geometric law for summation of two vectors:

Vector C is defined to be a sum of vectors A and B.
From simple geometric calculations, Euclidean coordinates of vector C are:

x c G x a H x b , y c G y a H y b

where
A G x a , y a , B G x b , y b , C G x c , y c .

Recall Pythagorean Theorem:
Two vectors a and b are orthogonal and c G a + b iff | c |2 G | a |2 H | b |2 .
Where + is geometric summation of vectors and | a | is Euclidean length of vector,

defined by | a |2 G x a
2 H y a

2 for two-dimensional vector a or

| a |2 G x a
2 H y a

2 H z a
2 in three-dimensional space.

Theorem 1: If A and B are orthogonal, then x a x b H y a y b G 0 .
Prove: Lets compute vector lengths of vectors A, B and C (squares of lengths).

| A |2 G x a
2 H y a

2 , | B |2 G x b
2 H y b

2 , | C |2 G x c
2 H y c

2

and by Pythagorean Theorem | C |2 G | A |2 H | B |2 .

Lets write full computation of | C |2 in terms of A and B coordinates:

| C |2 I x a J x b
2 J y a J y b

2 or | C |2 I x a
2 J y a

2 J x b
2 J y b

2 .

x a
2 J 2x a x b J x b

2 J y a
2 J 2y a y b J y b

2 I x a
2 J x b

2 J y a
2 J y b

2 ;

2x a x b K 2y a y b L 0 ;

x a x b K y a y b L 0 that is what was required to be proven.

Theorem 2: If x a x b K y a y b L 0 then A and B are orthogonal vectors.

Prove: If x a x b K y a y b L 0 , then | C |2 M | A |2 N | B |2 - symmetric to prove of Theorem 1. By

Pythagorean Theorem | C |2 M | A |2 N | B |2 , therefore vectors A and B are orthogonal.



In three-dimensional space the things are quit similar.
As known from stereometric laws, two vectors A and B are orthogonal iff exist plane P:O The plane P is defined by three points (A, B, O), where O is coordinates system centre.O Vectors A and B are orthogonal on two-dimensional space in plane P.

Define vector C that is a geometric summation of vectors A and B in plane P. By definition of
stereometric vector length and Pythagorean theorem, we can compute lengths of A, B and C like this:

| A |2 P x a
2 Q y a

2 Q z a
2 , | B |2 P x b

2 Q y b
2 Q z b

2 , | C |2 P x c
2 Q y c

2 Q z c
2 and else

| C |2 R | A |2 S | B |2 .
Coordinates of vector C are computed like this:

x c T x a U x b , y c T y a U y b , z c T z a U z b .

Where A T x a , y a , z a , B T x b , y b , z b , C V x c , y c , z c .

By simple substitution equation for | C |2 can be rewrote like this:

| C |2 W x a X x b
2 X y a X y b

2 X z a X z b
2 and else | C |2 W x a

2 X y a
2 X z a

2 X x b
2 X y b

2 X z b
2 .

x a
2 X 2x a x b X x b

2 X y a
2 X 2y a y b X y b

2 X z a
2 X 2z a z b X z b

2 W
x a

2 X y a
2 X z a

2 X x b
2 X y b

2 X z b
2 ;

2x a x b U 2y a y b U 2z a z b T 0 ; x a x b U y a y b U z a z b Y 0 .
This result is equivalent for “Theorem 1” in three-dimensional space. The prove for “Theorem 2”  in
three-dimensional space is quit symmetric exactly like it was in case of two-dimensional vector space.

Lets generalize definition of orthogonality for vector space of any dimension.

For two and three-dimensional vector space, vectors a and b are orthogonal iff Z[�\^]
_A`ba�c d e d f�g

.

This result we get from simple geometric laws and Pythagorean Theorem.



For other dimensions, where N h 2 and N i 3 , the geometric laws are irrelevant.
Therefore, we postulate this definition:
  

Two N-dimensional vectors a  and b of real numbers are

orthogonal iff j
i k 0

N l 1

a i b i m 0 .

Where N is integer, N n 0 . The last sum is so important, that deserved for own name: Dot Product

of two vectors of real numbers a and b is a , b o�p
i q 0

N r 1

a i b i . Within Dot Product

notation, two vectors of real numbers a and b are orthogonal iff a , b s 0 .

Remind definition of vector length (norm). In N-dimensional space length of vector a  is defined

like | a | t u
n v 0

N w 1

a 2 n and corresponding square length is | a |2 x y
n z 0

N { 1

a 2 n .

Within Dot Product notation for N-dimensional vector of real numbers a, its square length is
| a |2 | a , a .
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Dot Product concept can be extended to cover the Space of Complex Vectors.
Lets start from square length of vector. By definition | a |2 ¢ a , a .

Any complex number I will write here in this form: a £ a r ¤ ja i . Where j 2 ¥(¦ 1 , a r is

called real part and a i imaginary part of complex number a . It is common to draw complex
number as two-dimensional vector. Square length of this vector could be computed like this:

|| a || 2 § a r
2 ¨ a i

2 .
For vector of N complex numbers its square length could be computed as square length of
2N-dimensional vector, where listed both – real and imaginary parts of each vector coordinate.
This square length is: 

|| a || 2 © ª
n « 0

N ¬ 1

a r
2 n ­ a i

2 n = 

( aa * ® a r ¯ ja i a r ° ja i ± a r
2 ² a i

2 )

 = ³
n ´ 0

N µ 1

a n a * n .

Where a * is a complex conjugate of a . Conjugate of complex number a  is signed a *
and defined like this: if a ¶ a r · ja i then a * ¸ a r ¹ ja i .

Orthogonality of complex number vectors can be defined by geometry laws only for one-dimensional
vectors. Given two one-dimensional vectors of complex numbers a and b , a º a r » ja i and

b ¼ b r ½ jb i . Take two points A and B in complex plane, corresponding to the given vectors:

A ¾ a r , a i and B ¿ b r , b i .

If vectors A and B are orthogonal, then a r b r À a i b i Á 0 according to the “Theorem 1”.



With geometrical interpretation of orthogonality, there is very important, although trivial
law of symmetry: If a is orthogonal to b, then b is orthogonal to a.

Suppose this definition of complex vectors orthogonality:
Given two N-dimensional vectors of complex numbers a  and b ,

we say a  is orthogonal to b  iff Â
n Ã 0

N Ä 1

a n b * n Å 0 .

Obviously, b  is orthogonal to a  iff Æ
n Ç 0

N È 1

b n a * n É 0 .

For one-dimensional complex vectors a  and b , where
a Ê { a r Ë ja i } and b Ì { b r Í jb i } :Î Orthogonality of a  to b  mean a r Ï ja i b r Ð jb i Ñ 0 .Ò Orthogonality of b  to a  mean a r Ó ja i b r Ô jb i Õ 0 .

Because of symmetry law we get two equations that must be valid simultaneously:

a r Ö ja i b r × jb i Ø 0
a r Ù ja i b r Ú jb i Û 0

That can be rewrote:
a r b r Ü ja r b i Ý ja i b r Þ a i b i ß 0
a r b r à ja r b i á ja i b r â a i b i ã 0

Lets sum the first equation with the second by its left and right parts:
2a r b r ä 2a i b i å 0 or a r b r æ a i b i ç 0 .

If now we represent complex number as two-dimensional vector of real numbers, we get this
immediate result: Orthogonality condition for one-dimensional vectors of complex numbers is
equivalent to orthogonality of two-dimensional vectors of real numbers.è é3ê�êìë�íïîìð�ñ�ò�ðAê^ó�ôöõø÷úù-ûýüÿþ��������	��
���
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Natural expansion of orthogonality condition to vector space of Complex numbers is:�

n � 0

N � 1

a n b * n � 0 .

From all the above calculation we get natural extent of Dot Product concept to the field

of complex number vectors: a , b �  
n ! 0

N " 1

a n b * n # 0 .

With complex Dot Product notation, we get this two final definitions:$ Two complex vectors a and b are orthogonal iff a , b % 0 .& The square length of complex vector a is || a ||2 ' a , a .
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Lets take a pair of complex continuous functions S and T . My goal is to define orthogonality ofU and V in range between real numbers a  and b . For simplicity I will restrict a W b ,
although this restriction is artificial.
Split range a , b to N equal pieces. From this pieces of range a , b and continuous functionsX and Y we can define two complex vectors Z and [ , N elements each:\ n ]?^ a _ b ` a

N
n for 0 a n b N

c n dfe a g b h a
N

n for 0 i n j N

Vector k is orthogonal to vector l iff m
n n 0

N o 1 p
n q * n r 0 . The same condition can be

rewritten like this: s
n t 0

N u 1 v
a w b x a

N
n y * a z b { a

N
n | 0 .

Multiply left and right parts of the equation by 
b } a

N
:

b ~ a
N

�
n � 0

N � 1 �
a � b � a

N
n � * a � b � a

N
n � 0 .

The left part of the last equation, by definition of Definite Integrals and Riemann Sum, if N is taken to

its positive infinite limit, it is Definite Integral: �
a

b �
x � * x dx .

From all the above calculations we get definition of
Orthogonality for Complex Continuous Functions:
Two complex continuous functions � and � are orthogonal

in range a , b iff �
a

b �
x � * x dx � 0 .

Given this formula, we define an extension of concept Dot Product for continuous functions. In this
case it is referred to as Inner Product and is defined for continuous complex functions � and � :

� , � ���
a

b �
x � * x dx .

With Inner Product notation, similar to Dot Product notation, condition of orthogonality is written like�
, � � 0 .
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